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Multiple regression and forecasting

yt = β0 + β1x1,t + β2x2,t + · · · + βkxk,t + εt.

yt is the variable we want to predict: the “response’ ’ variable
Each xj,t is numerical and is called a “predictor’ ’. They are usually
assumed to be known for all past and future times.
The coefficients β1, . . . , βk measure the effect of each predictor after
taking account of the effect of all other predictors in the model.

That is, the coefficients measure the marginal effects.

εt is a white noise error term
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Example: US consumption expenditure

fit_cons <- us_change %>%
model(lm = TSLM(Consumption ~ Income))

report(fit_cons)

## Series: Consumption
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.582 -0.278 0.019 0.323 1.422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5445 0.0540 10.08 < 2e-16 ***
## Income 0.2718 0.0467 5.82 2.4e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.591 on 196 degrees of freedom
## Multiple R-squared: 0.147, Adjusted R-squared: 0.143
## F-statistic: 33.8 on 1 and 196 DF, p-value: 2e-08
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Example: US consumption expenditure
fit_consMR <- us_change %>%
model(lm = TSLM(Consumption ~ Income + Production + Savings + Unemployment))

report(fit_consMR)

## Series: Consumption
## Model: TSLM
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.906 -0.158 -0.036 0.136 1.155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.25311 0.03447 7.34 5.7e-12 ***
## Income 0.74058 0.04012 18.46 < 2e-16 ***
## Production 0.04717 0.02314 2.04 0.043 *
## Savings -0.05289 0.00292 -18.09 < 2e-16 ***
## Unemployment -0.17469 0.09551 -1.83 0.069 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.31 on 193 degrees of freedom
## Multiple R-squared: 0.768, Adjusted R-squared: 0.763
## F-statistic: 160 on 4 and 193 DF, p-value: <2e-16
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Trend

Linear trend

xt = t

t = 1, 2, . . . , T
Strong assumption that trend will continue.
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Nonlinear trend

Piecewise linear trend with bend “knot” at τ

x1,t = t

x2,t = (t − τ )+ =
 0 t < τ

(t − τ ) t ≥ τ

β1 trend slope before time τ
β1 + β2 trend slope after time τ
More knots can be added forming more (t − τ )+

Quadratic or higher order trend

x1,t = t, x2,t = t2, . . .

NOT RECOMMENDED!
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Uses of dummy variables

Seasonal dummies

For quarterly data: use 3 dummies
For monthly data: use 11 dummies
For daily data: use 6 dummies
What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable to remove its effect.
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Holidays

For monthly data

Christmas: always in December so part of monthly seasonal
effect
Easter: use a dummy variable vt = 1 if any part of Easter is in that
month, vt = 0 otherwise.
Ramadan and Chinese new year similar.

For daily data

If it is a public holiday, dummy=1, otherwise dummy=0.
11Weekend v working day



Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

sk(t) = sin
(
2πkt
m

)
ck(t) = cos

(
2πkt
m

)

yt = a + bt +
K∑
k=1

[αksk(t) + βkck(t)] + εt

Every periodic function can be approximated by sums of sin and cos terms for
large enough K.
Choose K by minimizing AICc.
Called “harmonic regression”

TSLM(y ~ trend() + fourier(K))
12
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Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

x1 = advertising for previous month;
x2 = advertising for two months previously;
...

xm = advertising formmonths previously.
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Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

εt are uncorrelated and zero mean
εt are uncorrelated with each xj,t.

It is useful to also have εt ∼ N(0, σ2) when producing prediction
intervals or doing statistical tests.
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Comparing regression models

R2 does not allow for “degrees of freedom’ ’.
Adding any variable tends to increase the value of R2, even if that variable is
irrelevant.

To overcome this problem, we can use adjusted R2:

R̄2 = 1 − (1 − R2)
T − 1

T − k − 1
where k = no. predictors and T = no. observations.

Maximizing R̄2 is equivalent to minimizing σ̂2.

σ̂2 =
1

T − k − 1

T∑
t=1

ε2t
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Akaike’s Information Criterion

AIC = −2 log(L) + 2(k + 2)
L = likelihood
k = # predictors in model.
AIC penalizes terms more heavily than R̄2.

AICC = AIC + 2(k+2)(k+3)
T−k−3

Minimizing the AIC or AICc is asymptotically equivalent to
minimizing MSE via leave-one-out cross-validation (for any
linear regression).
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Bayesian Information Criterion

BIC = −2 log(L) + (k + 2) log(T)

where L is the likelihood and k is the number of predictors in the
model.

BIC penalizes terms more heavily than AIC
Also called SBIC and SC.
Minimizing BIC is asymptotically equivalent to leave-v-out
cross-validation when v = T[1 − 1/(log(T) − 1)].
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Leave-one-out cross-validation

For regression, leave-one-out cross-validation is faster and more
efficient than time-series cross-validation.

Select one observation for test set, and use remaining
observations in training set. Compute error on test observation.
Repeat using each possible observation as the test set.
Compute accuracy measure over all errors.
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Cross-validation

Traditional evaluation
Training dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining data Test dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest data

time

Time series cross-validation
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Cross-validation

Traditional evaluation
Training dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining dataTraining data Test dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest dataTest data
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Choosing regression variables

Best subsets regression

Fit all possible regression models using one or more of the
predictors.
Choose the best model based on one of the measures of
predictive ability (CV, AIC, AICc).

Warning!

If there are a large number of predictors, this is not possible.
For example, 44 predictors leads to 18 trillion possible models!
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Choosing regression variables

Backwards stepwise regression

Start with a model containing all variables.
Try subtracting one variable at a time. Keep the model if it has lower CV or
AICc.
Iterate until no further improvement.

Forwards stepwise regression

Start with a model containing only a constant.
Add one variable at a time. Keep the model if it has lower CV or AICc.
Iterate until no further improvement.

Hybrid backwards and forwards also possible.

Stepwise regression is not guaranteed to lead to the best possible model.
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What should you use?

Notes

Stepwise regression is not guaranteed to lead to the best possible model.
Inference on coefficients of final model will be wrong.

Choice: CV, AIC, AICc, BIC, R̄2

BIC tends to choose models too small for prediction (however can be useful
for large k).
R̄2 tends to select models too large.
AIC also slightly biased towards larger models (especially when T is small).
Empirical studies in forecasting show AIC is better than BIC for forecast
accuracy.

Choice between AICc and CV (double check AIC and BIC where possible).

25
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Outline

1 The linear model with time series

2 Some useful predictors for linear models

3 Residual diagnostics

4 Selecting predictors and forecast evaluation

5 Forecasting with regression

6 Matrix formulation

7 Correlation, causation and forecasting
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Ex-ante versus ex-post forecasts

Ex ante forecasts are made using only information available in
advance.

▶ require forecasts of predictors

Ex post forecasts are made using later information on the
predictors.

▶ useful for studying behaviour of forecasting models.

trend, seasonal and calendar variables are all known in advance,
so these don’t need to be forecast.
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Multiple regression forecasts

Fitted values

ŷ = Xβ̂ = X(X′X)−1X′y = Hy

where H = X(X′X)−1X′ is the “hat matrix’ ’.

Leave-one-out residuals

Let h1, . . . , hT be the diagonal values of H, then the cross-validation statistic is

CV =
1
T

T∑
t=1

[et/(1 − ht)]2,

where et is the residual obtained from fitting the model to all T observations.
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2 Some useful predictors for linear models

3 Residual diagnostics
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Correlation is not causation

When x is useful for predicting y, it is not necessarily causing y.
e.g., predict number of drownings y using number of ice-creams
sold x.
Correlations are useful for forecasting, even when there is no
causality.
Better models usually involve causal relationships (e.g.,
temperature x and people z to predict drownings y).
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