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The linear model with time series Peviciow
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Multiple regression and forecasting

- Tegponse ved ) chov s
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m y; is the variable we want to predict: the “response’’ variable

m Each x;; is numerical and is called a “predictor’’. They are usually

assumed to be known for all past and future times.
T Tousf ovfevowy § e cae

m The coefficients f1, . . . , 5« measure the effect of each predictor after
taking account of the effect of all other predictors in the model.

That is, the coefficients measure the marginal effects.

m & is a white noise error term
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Example: US consumption expenditure

as spe YUurey ever Im
fit_cons <- us_cfy@@% E(Eﬂkf"’-l-)t fod P Tx Ecovomic measlod
model(lm = TSLM(Consumption ~ Income))
report (fit_cons) bes Pot REed £ Yok prasiod
A A =
## Series: Consumption Y™ Bof F:x}
## Model: TSLM a { ot
o = s [y e Eslw«mjrul me
## Residuals: - 054 + 087 %,
## Min 1Q Median 3Q Max -
## -2.582 -0.278 0.019 0.323 1.422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t]|)
Lloan? ##@n ercep 0.5445 0.0540 10.08 < 2e-16 xx*
gndeJA## ncome 0.2718 0.0467 5.82 2.4e-08 *xxx
R ==
## Signif. codes: 0 ’**%x’ 0.001 ’**’ 0.01 ’x’ 0.05 ’.” 0.1 > > 1
##

## Residual standard error: 0.591 on 196 degrees of freedom
## Multiple R-squared: 0.147, Adjusted R-squared: 0.143
## F-statistic: 33.8 on 1 and 196 DF, p-value: 2e-08
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Example: US consumption expenditure

fit_consMR <- us_change %>% * lm‘e:cﬂp“ a|waengt
model(lm = TSLM(Consumption ~ Income + Production + Savings + Unemployment)) Incdmded  um (gg7s

report(fit_consMR) B{ X,t XH X?( )(%
y~nOo+ ...

## Serdies: Consumption
## Model: TSLM

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.906 -0.158 -0.036 0.136 1.155

## Glﬁ\fwvg +o Q—w»«,j oovveladions (S’uih/h t’ﬂ R 7{ Shov —H'efz)
## Coefficients:

## Estimate Std. Erref t value Pr(>|t|)

## (Intercept) " 0.25311 0] 447 7.34 5.7e-12 *x*xx

## Income 1 0.74058 0.04012  18.46 < 2e-16 xxx o Fave coub v _'Tv\{exwaz

## Production P 0.04717 0.02314 2.04 0.043 *

## Savings b -0.05289 | 0.00292 -18.09 < 2e-16 *x* (u: dow't coms atef povolkes )

## Unemploymenﬂ4—0.17469 0.09551 -1.83 0.069 .

## ———

## Signif. codes: 0 ’*x*x’ 0.001 ’xx’ 0.01 ’x’ 0.05 >.” 0.1’ ’ 1

##

## Residual standard error: 0.31 on 193 degrees of freedom

## Multiple R-squared: 0.768, Adjusted R-squared: 0.763 6

## F-statistic: 160 on 4 and 193 DF, p-value: <2e-16
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Outline

+ FHate ave O~F alewewy? olocenveal

Some useful predictors for linear models bt ym cor crombe soe
Mot ove  wiefd.

~ oo~ R
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Linear trend

xt=t Yz Bot mteg

mt=12...,T

m Strong assumption that trend will continue. A Veny shuwgy acrump he
% po(g’?‘:@ ok Av (herd -term
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Nonlinear trend

Piecewise linear trend with bend “knot” at 7

9, = Fo‘} ?n )(.k'f B2 X2, *+ € X17t = t
0 t<rt
Xz)t = (t - T)+ = {

t—17) t>71

m (4 trend slope before time 7
m (4 + [, trend slope after time 7
m More knots can be added forming more (t — 7).
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Nonlinear trend

Piecewise linear trend with bend “knot” at 7
Yy = ot B Xy FaXay TE s = F P
0 t<rt
Xop=(t—7)s = { M

t—17) t>71

I

t
m (4 trend slope before time 7 e D 123

m (4 + [, trend slope after time 7
m More knots can be added forming more (t — 7).
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Nonlinear trend

A

Piecewise linear trend with bend “knot” at 7 de /.
X1t =t
9\ = RBot B Xt BaXap € L Bt Po
0 t<r
X2,t=(t_7-)+= (t—’T) t>7' F.
m [3; trend slope before time 7 o s

m (4 + [, trend slope after time 7
m More knots can be added forming more (t — 7).

Quadratic or higher order trend
X1t = t, Xot = t2,

NOT RECOMMENDED! ?
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Uses of dummy variables

Seasonal dummies

. WM ? Plo.
m For quarterly data: use 3 dummies

m For monthly data: use 11 dummies
m For daily data: use 6 dummies
m What to do with weekly data? - ot ceacbiy £2 weere (3¢5/7 = £204)

S] C[Mwwwj vamek g ?

Outliers

m If there is an outlier, you can use a dummy variable to remove its effect.

5 g‘nnlM% O\Ad-wrfc; (spile v
bus tovel NG)M'I"/' affes
10
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Holidays

For monthly data

m Christmas: always in December so part of monthly seasonal
effect

m Easter: use a dummy variable v; = 1 if any part of Easter is in that
month, v; = 0 otherwise.
m Ramadan and Chinese new year similar.

For daily data

m If itis a public holiday, dummy=1, otherwise dummy=0.

Weekend v working day 11



Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:
2wkt 2wkt

Cod wp Mme: s(t) = sin (7> ck(t) = cos <@>

C goasonad Pe/v"od

K
ye=a+bt+> [ags(t) + Bkck(t){] +&;
LS AL o ALY/
mE  Arewd k=1 Meore ave iuwolrdaed 62 povivs

m Every periodic function can be approximated by sums of sin and cos terms for
large enough K. (K < =
m Choose K by minimizing AlCc.

. . ) i ‘FNSI"
m Called “harmonic regression” — as L inereases ue qeb harmamics of £
o puvier fevms,

TSLM(y ~ trend() + fourier(K))
% . \4 » PQ_(-}-,wlo’w usefnl ﬂw LMJ)Q m 12
PLCI{—j -homl(\j m=24 I/JCEMOM‘R w52
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Geveved focm

he k=t g, (6): s (2_17/':) o l(t): cos (z%t)
Quon'rerly daks "
e 2o (Te) as (T
k=2 ¢ (€)= < (&v:t ) c, (€)= &3 (&"’sz)
- g:m(vt)=o . as(vt)

frue  fe k=% S N IE o ko2

w
2
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Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

X1 = advertising for previous month;

X, = advertising for two months previously;

Xm = advertising for m months previously.

13



Residual diagnostics — o Coupl of extm Ahivgs

14
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Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

—Z’eé = O Z xk,*ﬂé = O
m ¢; are uncorrelated and zero mean e et
9 cnormad eqwml'{ons an ﬂamf as
c ... M ¢ are uncorrelated with each x; ;. & M e G eyt

eudo mq,:l-g,

It is useful to also have e; ~ N(0, 02) when producing prediction
intervals or doing statistical tests.

15
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Selecting predictors and forecast evaluation

16



Comparing regression models

m R? does not allow for “degrees of freedom’’.
m Adding any variable tends to increase the value of R?, even if that variable is
irrelevant.

17



Comparing regression models

m R? does not allow for “degrees of freedom’’.
m Adding any variable tends to increase the value of R?, even if that variable is
irrelevant.

To overcome this problem, we can use adjusted R?:

_ T—1
RP=1-(1-R)———
( L —

where k = no. predictors and T = no. observations.
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Comparing regression models

m R? does not allow for “degrees of freedom’’.
m Adding any variable tends to increase the value of R?, even if that variable is
irrelevant.

To overcome this problem, we can use adjusted R?:

_ T—1
R?=1—(1—R?
T

where k = no. predictors and T = no. observations.

Maximizing R? is equivalent to minimizing 52.

Wt CA~N DD

T
r esfivma ad ~ 1
estimabed vesiduad a7 = ng pETTC R
T—k-1Z3

v 01N oA (R

17
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Akaike’s Information Criterion

/ berept + voriomne
AIC = —2log(L) + 2(k + 2)

m L = likelihood

m k =# predictors in model.

m AIC penalizes terms more heavily than R2. — swetter wedie

18
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Akaike’s Information Criterion

[// e iv\'—é/“w + voniame

AIC = —2log(L) + 2(k + 2)
m L = likelihood
m k =# predictors in model.
m AIC penalizes terms more heavily than R?. — swmetler sedide

_ 2(k+2)(k+3)

m Minimizing the AIC or AlCc is asymptotically equivalent to
minimizing MSE via leave-one-out cross-validation (for any
linear regression). l? CAUL o 00w | uselal fhe pradichon

18
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Bayesian Information Criterion

BIC = —2log(L) + (k + 2) log(T)

where L is the likelihood and k is the number of predictors in the
model.

m BIC penalizes terms more heavily than AIC - T«ﬂ;&:{;ﬁb modeds

m Also called SBIC and SC.

® Minimizing BIC is asymptotically equivalent to leave-v-out
cross-validation when v = T[1 — 1/(log(T) — 1)].

19
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Leave-one-out cross-validation

For regression, leave-one-out cross-validation is faster and more

efficient than time-series cross-validation. wl& wibn ona vepression

(wu( show J(WS).
m Select one observation for test set, and use remaining

observations in training set. Compute error on test observation.
m Repeat using each possible observation as the test set.
m Compute accuracy measure over all errors.

20
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Cross-validation

Traditional evaluation

Training data Test data
——0—0 00000000 0 0000 0 0 00 0 00 00—
time

21



Cross-validation

Traditional evaluation
Training data Test data

time
Time series cross-validation
h=1
——r — — — — — — — — —
——0—0—0 000 ¢ 0 0 0 0 0 0 0 ¢ ¢ 0 0 0 0 0 0 0 0 0
—e—9o 9o ¢ oo — — — — — — — — — —
——9 9o o o o or— — — — — — — — — — —
—e 9o o oo o or— — — — — — — — —
—e—9o 9o 9o o o o o o — — — — — — — — — — — — — — —
—e 9o 9o 9o oo o oo or— — — — — — — — — — —
—e 9o 9o 9o oo o oo o o»r— — — — — — — — — — — —
— 909090 o 0 o o 9o 9o o o — — — — — — — — — — — — —
—e 9990 oo oo o o o o—or— — — — — — — — — — — —
— 99090 e 9 90 9 90 90 o o o o — — — — — — — — — — — —>
— 90009000 90 0 090 0 0 0 — — — — — — — — — — —
— 99909090 0090 o 9o o oo oo r— — — — — — — — — — —
— 90909090 90 90 0 90 90 90 e 9 0 o o — — — — — — — — — —>
— 009090909090 90 0 0 0 0 0 0 00— — — — — — — — —»
— 900090000 900090 0 00 0 00— — — — — — — —>
— 0990909 090 0 0 90 0 0 9 90 90 ¢ 9o o o —— — — — — — —>

— O — — — — — — — 21



Cross-validation

Traditional evaluation
Training data Test data

time

Leave-one-out cross-validation \
v fou ante acknally wihag sowne Lobuse yformafion in -fom._e.rrﬂmd;.
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Cross-validation

Traditional evaluation
Training data Test data

xThis 15 vouy fart - Hore

Leave-one-out cross-validation . ek

oo o o o o o o CVY=MSEontestsets o~ o

——0—0—0—0—0 000000000 ¢ 000 ¢ 0 0 0 0 00— 22
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Choosing regression variables

Best subsets regression

m Fit all possible regression models using one or more of the
predictors.

m Choose the best model based on one of the measures of
predictive ability (CV, AIC, AlCc).

23



Choosing regression variables

Best subsets regression

m Fit all possible regression models using one or more of the
predictors.

m Choose the best model based on one of the measures of
predictive ability (CV, AIC, AlCc).

Warning!

m If there are a large number of predictors, this is not possible.
m For example, 44 predictors leads to 18 trillion possible models!

23



Choosing regression variables

Backwards stepwise regression

m Start with a model containing all variables.
m Try subtracting one variable at a time. Keep the model if it has lower CV or

AlCc.
m lterate until no further improvement.

Forwards stepwise regression " asebd alem ym eonnet Bt ald wndebes kST

m Start with a model containing only a constant.
m Add one variable at a time. Keep the model if it has lower CV or AlCc.
m Iterate until no further improvement.

Hybrid backwards and forwards also possible.
m Stepwise regression is not guaranteed to lead to the best possible model.

24
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What should you use?

Notes

m Stepwise regression is not guaranteed to lead to the best possible model.
m Inference on coefficients of final model will be wrong. « . .. i

Choice: CV, AIC, AlCc, BIC, R?

m BIC tends to choose models too small for prediction (however can be useful
for large k).

m R? tends to select models too large.

m AIC also slightly biased towards larger models (especially when T is small).

m Empirical studies in forecasting show AIC is better than BIC for forecast
accuracy.

Choice between AlCc and CV (double check AIC and BIC where possible).

25
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Forecasting with regression
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Ex-ante versus ex-post forecasts

m Ex ante forecasts are made using only information available in

advance. \
. . v or lifure vedmen are piven boens .
» require forecasts of predictors

m Ex post forecasts are made using later information on the
predictors.  * ccemario based freanbng
» useful for studying behaviour of forecasting models.
m trend, seasonal and calendar variables are all known in advance,
so these don’t need to be forecast.

¢ v oll cones predicher wdervoln oe umdereshmoted
27
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n Matrix formulation

28



Multiple regression forecasts

Fitted values
y =XB = X(X'X)" X'y = Hy

Re¢idured = 3,9 = 2:4,

where H = X(X’X)~1X is the “hat matrix’". e R= T-H

P/o"a_z/}—)ow . Pﬂ"\"—& 3am1rw X
= pves he best Dvear approx o{J ume X

Let hq, ..., hy be the diagonal values of H, then the cross-validation statistic is

Leave-one-out residuals

1 T
Cv = T’ Z[et/(l — ht)]za
t=1

where e; is the residual obtained from fitting the model to all T observations.

N gﬁ Youn Gy CO\[CLA/{BV‘LQ He CV ,{l—,omn

only fibling ot Aol 2
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Correlation, causation and forecasting

30



Correlation is not causation

CovveAde Hon 7> CamnsaMHon tomsehion = csrvvelashon @

m When x is useful for predicting y, it is not necessarily causing y.

m e.g., predict number of drownings y using number of ice-creams
sold x.  Gyobisks on & Kiléa 2d do wel cwate vodiu BUT . ...

m Correlations are useful for forecasting, even when there is no-
causality.

m Better models usually involve causal relationships (e.g.,

temperature x and people z to predict drowningsy). . ..; .. e
shu -Fg_(m’l‘
wi fuevt
capsmtrom gy
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