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Regression with ARIMA errors

Regression models
yt = β0 + β1x1,t + · · · + βkxk,t + εt,

yt modeled as function of k explanatory variables x1,t, . . . , xk,t.
In regression, we assume that εt is WN.
Now we want to allow εt to be autocorrelated.

Example: ARIMA(1,1,1) errors
yt = β0 + β1x1,t + · · · + βkxk,t + ηt,

(1 − ϕ1B)(1 − B)ηt = (1 + θ1B)εt,

where εt is white noise.
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Residuals and errors

Example: ηt = ARIMA(1,1,1)

yt = β0 + β1x1,t + · · · + βkxk,t + ηt,

(1 − ϕ1B)(1 − B)ηt = (1 + θ1B)εt,

Be careful in distinguishing ηt from εt.
Only the errors εt are assumed to be white noise.
In ordinary regression, ηt is assumed to be white noise and so
ηt = εt.
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Estimation

If we minimize ∑
η2
t (by using ordinary regression):

1 Estimated coefficients β̂0, . . . , β̂k are no longer optimal as some
information ignored;

2 Statistical tests associated with the model (e.g., t-tests on the
coefficients) are incorrect.

3 p-values for coefficients usually too small (“spurious regression’ ’).
4 AIC of fitted models misleading.

Minimizing ∑
ε2t avoids these problems.

Maximizing likelihood similar to minimizing ∑
ε2t .
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Stationarity

Regression with ARMA errors

yt = β0 + β1x1,t + · · · + βkxk,t + ηt,

where ηt is an ARMA process.

All variables in the model must be stationary.
If we estimate the model while any of these are non-stationary,
the estimated coefficients can be incorrect.
Difference variables until all stationary.
If necessary, apply same differencing to all variables.
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Stationarity

Model with ARIMA(1,1,1) errors

yt = β0 + β1x1,t + · · · + βkxk,t + ηt,

(1 − ϕ1B)(1 − B)ηt = (1 + θ1B)εt,

Equivalent to model with ARIMA(1,0,1) errors

y′
t = β1x′

1,t + · · · + βkx′
k,t + η′

t,

(1 − ϕ1B)η′
t = (1 + θ1B)εt,

where y′
t = yt − yt−1, x′

t,i = xt,i − xt−1,i and η′
t = ηt − ηt−1.
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Regression with ARIMA errors

Any regression with an ARIMA error can be rewritten as a regression with an
ARMA error by differencing all variables with the same differencing operator
as in the ARIMA model.
Original data

yt = β0 + β1x1,t + · · · + βkxk,t + ηt

where ϕ(B)(1 − B)dηt = θ(B)εt

After differencing all variables
y′
t = β1x′

1,t + · · · + βkx′
k,t + η′

t.
where ϕ(B)η′

t = θ(B)εt,
y′
t = (1 − B)dyt, x′

i,t = (1 − B)dxi,t, and η′
t = (1 − B)dηt
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Regression with ARIMA errors

In R, we can specify an ARIMA(p, d, q) for the errors, and d levels of
differencing will be applied to all variables (y, x1,t, . . . , xk,t) during
estimation.
Check that εt series looks like white noise.
AICc can be calculated for final model.
Repeat procedure for all subsets of predictors to be considered, and
select model with lowest AICc value.
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Forecasting

To forecast a regression model with ARIMA errors, we need to
forecast the regression part of the model and the ARIMA part of
the model and combine the results.
Some predictors are known into the future (e.g., time, dummies).
Separate forecasting models may be needed for other predictors.
Forecast intervals ignore the uncertainty in forecasting the
predictors.
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Dynamic harmonic regression

Combine Fourier terms with ARIMA errors
Advantages

it allows any length seasonality;
for data with more than one seasonal period, you can include Fourier
terms of different frequencies;
the seasonal pattern is smooth for small values of K (but more wiggly
seasonality can be handled by increasing K);
the short-term dynamics are easily handled with a simple ARMA error.

Disadvantages
seasonality is assumed to be fixed
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Eating-out expenditure

aus_cafe <- aus_retail %>% filter(
Industry == "Cafes, restaurants and takeaway food services",
year(Month) %in% 2004:2018
) %>% summarise(Turnover = sum(Turnover))

aus_cafe %>% autoplot(Turnover)
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Eating-out expenditure

fit <- aus_cafe %>% model(
`K = 1` = ARIMA(log(Turnover) ~ fourier(K = 1) + PDQ(0,0,0)),
`K = 2` = ARIMA(log(Turnover) ~ fourier(K = 2) + PDQ(0,0,0)),
`K = 3` = ARIMA(log(Turnover) ~ fourier(K = 3) + PDQ(0,0,0)),
`K = 4` = ARIMA(log(Turnover) ~ fourier(K = 4) + PDQ(0,0,0)),
`K = 5` = ARIMA(log(Turnover) ~ fourier(K = 5) + PDQ(0,0,0)),
`K = 6` = ARIMA(log(Turnover) ~ fourier(K = 6) + PDQ(0,0,0)))

glance(fit) %>% select(.model, sigma2, log_lik, AIC, AICc, BIC)

.model sigma2 log_lik AIC AICc BIC

K = 1 0.002 317 -616 -615 -588
K = 2 0.001 362 -700 -698 -661
K = 3 0.001 394 -763 -761 -725
K = 4 0.001 427 -822 -818 -771
K = 5 0.000 474 -919 -917 -875
K = 6 0.000 474 -920 -918 -875

15

George

George

George

George



Eating-out expenditure

AICc = −615
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Eating-out expenditure

AICc = −698
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Eating-out expenditure

AICc = −761
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Eating-out expenditure

AICc = −818
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Eating-out expenditure

AICc = −917
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Eating-out expenditure

AICc = −918
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Stochastic & deterministic trends

Deterministic trend

yt = β0 + β1t + ηt
where ηt is ARMA process.

Stochastic trend

yt = β0 + β1t + ηt
where ηt is ARIMA process with d = 1.
Difference both sides until ηt is stationary:

y′
t = β1 + η′

t

where η′
t is ARMA process.
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Air transport passengers Australia

aus_airpassengers %>%
autoplot(Passengers) +
labs(y = "Passengers (millions)",

title = "Total air passengers")
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Air transport passengers Australia

Deterministic trend

fit_deterministic <- aus_airpassengers %>%
model(ARIMA(Passengers ~ 1 + trend() + pdq(d = 0)))

report(fit_deterministic)

## Series: Passengers
## Model: LM w/ ARIMA(1,0,0) errors
##
## Coefficients:
## ar1 trend() intercept
## 0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
##
## sigma^2 estimated as 4.343: log likelihood=-101
## AIC=210 AICc=211 BIC=217 28
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Air transport passengers Australia

Deterministic trend

fit_deterministic <- aus_airpassengers %>%
model(ARIMA(Passengers ~ 1 + trend() + pdq(d = 0)))
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## 0.9564 1.415 0.901
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yt = 0.901 + 1.415t + ηt

ηt = 0.956ηt−1 + εt

εt ∼ NID(0, 4.343).



Air transport passengers Australia

Stochastic trend

fit_stochastic <- aus_airpassengers %>%
model(ARIMA(Passengers ~ 1 + pdq(d = 1)))

report(fit_stochastic)

## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
## constant
## 1.419
## s.e. 0.301
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
## AIC=200 AICc=201 BIC=204 29
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Air transport passengers Australia

Stochastic trend

fit_stochastic <- aus_airpassengers %>%
model(ARIMA(Passengers ~ 1 + pdq(d = 1)))

report(fit_stochastic)

## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
## constant
## 1.419
## s.e. 0.301
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
## AIC=200 AICc=201 BIC=204 29

yt − yt−1 = 1.419 + εt,

yt = y0 + 1.419t + ηt

ηt = ηt−1 + εt

εt ∼ NID(0, 4.271).
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Air transport passengers Australia
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Air transport passengers Australia

aus_airpassengers %>% autoplot(Passengers) +
autolayer(fit_stochastic %>% forecast(h = 20), colour = "#0072B2", level = 95) +
autolayer(fit_deterministic %>% forecast(h = 20), colour = "#D55E00", level = 95,

alpha = 0.65) +
labs(y = "Air passengers (millions)", title = "Forecasts from trend models")
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Forecasting with trend

Point forecasts are almost identical, but prediction intervals
differ.
Stochastic trends have much wider prediction intervals because
the errors are non-stationary.
Be careful of forecasting with deterministic trends too far ahead.
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