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The exam contains FIVE questions. ALL questions must be answered. The exam is worth 100
marks in total.

SECTION A

Write about a quarter of a page each on any four of the following topics. Clearly state if you agree
or disagree with each statement.

1. Events like COVID-19 show that forecasting is never a good idea because the future is too
unpredictable.

2. Taking logarithms of the data is useful for stabilizing the variance of a time series.

3. Regression models are better than ARIMA models because the coefficients are more inter-
pretable.

4. The best forecasting model has white noise residuals.

5. Choosing a model using the AICc is better than choosing a model on the basis of a test set
because it involves all the data.

6. The MAPE is the best accuracy measure because it is easy to understand and is independent
of the scale of the data.

]Total: 20 marks\

— END OF SECTION A —
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SECTION B

Figures 1, 2 and 3 relate to the daily page views on the OTexts website from 1 January 2018 to
10 April 2022.

1. Using Figures 1, 2 and 3, describe the daily page views on the OTexts website. Carefully

comment on the interesting features of all three plots.

otexts %>%
autoplot(Pageviews) +
labs(subtitle = "Daily Pageviews on 0Texts.com", y = "Thousands")
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Figure 1:

otexts %>%
gg_season(Pageviews, period = "year") +
labs(subtitle = "Daily Pageviews on 0Texts.com", y = "Thousands")

Daily Pageviews on OTexts.com
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otexts %>%
gg_season(Pageviews, period = "week") +
labs(subtitle = "Daily Pageviews on 0Texts.com", y = "Thousands")
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Figure 3:

2. Figure 4 was created using the code below. Why has a logarithm been used? Comment on
the choice of the window argument in each term. What would you expect if the window values

were substantially changed?

otexts %>%

model(STL(log(Pageviews) ~ trend(window = 99) +
season(period = "week", window = 99) +
season(period = "year", window = 9),
robust = TRUE

)) %>%

components() %>%

autoplot()
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STL decomposition
log(Pageviews)” = trend + season_week + season_year + remainder
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Figure 4:
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3. You have been asked to provide forecasts for the next four weeks for OTexts pageviews.

Consider applying each of the methods and models below. Comment, in a few words each,
on whether each one is appropriate for forecasting the data. No marks will be given for
simply guessing whether a method or a model is appropriate without justifying your choice.

Start your response by stating: suitable or not suitable.

(a) Seasonal naive method using annual seasonality.
(b) Seasonal naive method using weekly seasonality.

(c) An STL decomposition on the log transformed data combined with an ETS to forecast the

seasonally adjusted component, and seasonal naive methods for both seasonal compo-
nents.

(d) Holt-Winters method with damped trend and multiplicative weekly seasonality.
(e) ETS(A,N,A).

(f) ETS(M,A,M) with annual seasonality.

(g) ARIMA(2,2,2)(0,0,0)7 applied to the log transformed data.

(h) ARIMA(0,1,1)(0,1,1)7 applied to the log transformed data.

(i) Regression with time and Fourier terms for both weekly and annual seasonality.
() Dynamic regression on the log transformed data with Fourier terms for the annual
—
[0 marks |

| Total: 20 marks |

— END OF SECTION B —
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SECTION C

The output below shows the results of fitting an ETS model to the Pageviews variable.

fit <- otexts %%
model (ETS (Pageviews))
report(fit)

## Series: Pageviews
## Model: ETS(M,A,M)
##  Smoothing parameters:

## alpha = 0.5737414

#t beta = 0.0001000033

## gamma = 0.1266783

#t

##  Initial states:

#t 1[0] b[0O] s[0] s[-1] s[-2] s[-3] s[-4] s[-5]
## 3.605899 0.1449521 0.6318171 0.7210449 1.035443 1.163588 1.300494 1.20237
## s[-6]

## 0.9452431

##

##  sigma™2: 0.0101

##

#t AIC AICc BIC

## 13337.34 13337.54 13401.58

1. Write down the observation and state equations for the model, specifying which is the obser-
vation equation, what parameters have been optimized, and explaining why this particular

model was chosen.
6 marks

2. Figure 5 shows the components of the model. Explain what has been plotted, and how these
plots relate to the equations shown earlier. Explain how the values of beta and gamma shown

earlier correspond to features of these plots.

fit %>%
components() %>%
autoplot()
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ETS(M,A,M) decomposition
Pageviews = (lag(level, 1) + lag(slope, 1)) * lag(season, 7) * (1 + remainder)
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Figure 5:

. How have the annual and weekly seasonalities been handled by this ETS model?

. Comment on the large residuals seen at the end of each year, and the dip in the level at the

end of each year. What is causing these?

. Do you expect this model to produce good forecasts for the next 3 weeks? What about for the

next 12 months? Explain.

‘Total: 20 marks ‘

— END OF SECTION C —
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SECTION D

It is decided to fit a dynamic regression model to the data, with Fourier terms to handle the annual
seasonality, and a seasonal ARIMA error to handle the weekly seasonality.
fit arima <- otexts %>%
model (
ARIMA(log(Pageviews) ~ fourier( "year", 4) + PDQ( "week"))
)
report(fit_arima)

## Series: Pageviews
## Model: LM w/ ARIMA(1,0,2)(2,1,1)[7] errors
## Transformation: log(Pageviews)

##

## Coefficients:

## arl mal ma2 sarl sar2 smal
#it 0.8858 -0.1213 -0.1750 0.1600 0.0247 -0.9046
## s.e. 0.0236 0.0361 0.0341 0.0307 0.0298 0.0182
## fourier(period = "year", K = 4)C1l 365

##t 0.0071

## s.e. 0.0318

##t fourier(period = "year", K = 4)S1 365

#t 0.0928

## s.e. 0.0319

#i#t fourier(period = "year", K = 4)C2_365

#Ht -0.1580

## s.e. 0.0251

## fourier(period = "year", K = 4)S2 365

##t -0.0818

## s.e. 0.0255

## fourier(period = "year", K = 4)C3 365

#t -0.0440

## s.e. 0.0228

#i#t fourier(period = "year", K = 4)S3 365

#it 0.0183

## s.e. 0.0229

## fourier(period = "year", K = 4)C4 365

## -0.0575

## s.e. 0.0208

#i#t fourier(period = "year", K = 4)S4 365

#t 0.0018

## s.e. 0.0209

#t

## sigma”2 estimated as 0.009012: 1log likelihood=1456.1
## AIC=-2882.21 AICc=-2881.9 BIC=-2801.98

1. Write down the model using backshift notation.
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2. Comment on the model diagnostics shown in Figure 6 and the output below. How might the
model be improved? Do you think the resulting forecasts will be reliable?

augment (fit arima) %>%

gg_tsdisplay(.innov, "histogram")
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Figure 6:
augment(fit arima) %>%
features(.innov, ljung box, 28, 14)

## # A tibble: 1 x 3

##  .model 1lb_stat lb_pvalue
##  <chr> <dbl> <dbl>
## 1 dr 43.9 0.0000617

. Figure 7 shows forecasts with prediction intervals for the next four weeks, along with the

data from 2022. The forecasts appear to have no trend. Why is that? If you wanted to include
a local trend, how would you modify the model?

fit arima %>%

forecast( "4 weeks") %>%
autoplot(otexts %>% filter(year(Date) == 2022)) +
labs( "Data and forecasts for 2022")
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Data and forecasts for 2022
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4. The one-step-ahead forecast is 35.0 pageviews. Give a 95% prediction interval assuming

Gaussian innovation residuals.
4 marks

5. It is thought that pageviews will be higher during teaching semesters. How would you

modify this model to allow for a semester effect?

]Total: 20 marks\

— END OF SECTION D —
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SECTION E

1. You decide to compare three different models on this data set: (a) the ETS model from Section
C; (b) the dynamic regression model from Section D; and (c) the STL decomposition shown
in Figure 4 with ETS applied to the seasonally adjusted data, and seasonal naive methods
applied to both seasonal components.

The following code uses a test set of the last 4 weeks to compare the three models, along with
two benchmark methods.

fit <- otexts %>%

head (-28) %>%
model (

)

fc <-
forecast(

ETS (Pageviews),
ARIMA(log(Pageviews) ~ fourier( “year", 4) +

PDQ( "week")),

decomposition model(
STL(log(Pageviews) ~ trend( 99) +

season( "week", 99) +
season ( “year", 9),
TRUE),

ETS(season_adjust)

NAIVE (Pageviews),
SNAIVE (Pageviews ~ lag("week"))

fit %>%

fc %%

accuracy(otexts,

arrange (RMSE)

28)

list( RMSE, MAPE)) %>%

## # A tibble: 5 x 4

##
##
##
##
##
##
##

u A W N -

.model .type

RMSE MAPE

<chr> <chr> <dbl> <dbl>

dr Test
ets Test
stl Test
snaive Test
naive Test

3.19 7.75
3.67 9.87
3.96 9.72
4.50 11.1
12.8 31.4

What do you conclude from the above output about the five models? Explain the two accuracy
measures used. Why is the naive method so bad?

2. An alternative approach to comparing the forecast accuracy of models would be to use time
series cross-validation. Explain the concept of time series cross-validation. You may use an

annotated diagram.
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3. You decide the snaive model is good enough even though it is not as accurate as the first three
models. Let the observations be yy, ...,y and the residual variance be denoted by o2. Write
down the forecast distribution for an h-step forecast. What assumptions have you made?

4. OTexts also needs forecasts of the maximum monthly traffic that could arise, in order to make
sure their internet server will cope with the extreme demand. They want to choose an internet
plan that allows for a maximum of P pageviews per month, and they are happy to allow a 1%
chance of being above this level. Explain how you would choose P based on forecasts over

the next 12 months.
5 marks
] Total: 20 marks

— END OF SECTIONE —
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