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Inflation adjustments

Turnover
A

djusted_turnover

1990 2000 2010

2000

3000

4000

3000

3500

4000

4500

5000

Year

$A
U

Turnover: Australian print media industry
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Mathematical transformations

If the data show different variation at different levels of the series, then a
transformation can be useful.

Denote original observations as y1, . . . , yT and transformed observations as
w1, . . . ,wT.
Mathematical transformations for stabilizing variation

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more interpretable:
changes in a log value are relative (percent) changes on the original scale.
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Box-Cox transformations

Each of these transformations is close to a member of the family of
Box-Cox transformations:

wt =
 log(yt), λ = 0;
(sign(yt)|yt|λ − 1)/λ, λ ̸= 0.

Actually the Bickel-Doksum transformation (allowing for yt < 0)
λ = 1: (No substantive transformation)
λ = 1

2 : (Square root plus linear transformation)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1) 6
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Transformations

Often no transformation needed.
Simple transformations are easier to explain and work well enough. 
Transformations can have very large effect on PI.

log1p() can also be useful for data with zeros.
Choosing logs is a simple way to force forecasts to be positive 
Transformations must be reversed to obtain forecasts on the original 
scale. (Handled automatically by fable.)
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Time series patterns

Recall

Trend pattern exists when there is a long-term increase or
decrease in the data.

Cyclic pattern exists when data exhibit rises and falls that are not
of fixed period (duration usually of at least 2 years).

Seasonal pattern exists when a series is influenced by seasonal
factors (e.g., the quarter of the year, the month, or day of
the week).

9



Time series decomposition

yt = f(St, Tt, Rt)

where yt = data at period t
Tt = trend-cycle component at period t
St = seasonal component at period t
Rt = remainder component at period t

Additive decomposition: yt = St + Tt + Rt.

Multiplicative decomposition: yt = St × Tt × Rt.
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Time series decomposition

Additive model appropriate if magnitude of seasonal fluctuations does
not vary with level.
If seasonal are proportional to level of series, then multiplicative model
appropriate.
Multiplicative decomposition more prevalent with economic series
Alternative: use a Box-Cox transformation, and then use additive
decomposition.
Logs turn multiplicative relationship into an additive relationship:

yt = St × Tt × Rt ⇒ log yt = log St + log Tt + log Rt.
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US Retail Employment

us_retail_employment <- us_employment |>
filter(year(Month) >= 1990, Title == "Retail Trade") |> 

select(-Series_ID)
us_retail_employment

## # A tsibble: 357 x 3 [1M]
## Month Title Employed
## <mth> <chr> <dbl>
## 1 1990 Jan Retail Trade 13256.
## 2 1990 Feb Retail Trade 12966.
## 3 1990 Mar Retail Trade 12938.
## 4 1990 Apr Retail Trade 13012.
## 5 1990 May Retail Trade 13108.
## 6 1990 Jun Retail Trade 13183.
## 7 1990 Jul Retail Trade 13170.
## 8 1990 Aug Retail Trade 13160.
## 9 1990 Sep Retail Trade 13113.
## 10 1990 Oct Retail Trade 13185.
## # ... with 347 more rows
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Moving average trend-cycle
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Additive classical decomposition
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Classical multiplicative decomposition of total US retail employment
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Additive classical decomposition
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Multiplicative classical decomposition
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Classical multiplicative decomposition of total US retail employment
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Comments on classical decomposition

Estimate of trend is unavailable for first few and last few
observations.
Seasonal component repeats from year to year. May not be
realistic.
Not robust to outliers.
Newer methods designed to overcome these problems.
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History of time series decomposition

Classical method originated in 1920s.
Census II method introduced in 1957. Basis for X-11 method and
variants (including X-12-ARIMA, X-13-ARIMA)
STL method introduced in 1983
TRAMO/SEATS introduced in 1990s.

National Statistics Offices
ABS uses X-12-ARIMA
US Census Bureau uses X-13ARIMA-SEATS
Statistics Canada uses X-12-ARIMA
ONS (UK) uses X-12-ARIMA
EuroStat use X-13ARIMA-SEATS
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STL decomposition

STL: “Seasonal and Trend decomposition using Loess”
Very versatile and robust.
Unlike X-12-ARIMA, STL will handle any type of seasonality.
Seasonal component allowed to change over time, and rate of change
controlled by user.
Smoothness of trend-cycle also controlled by user.
Robust to outliers
No trading day or calendar adjustments.
Only additive.
Take logs to get multiplicative decomposition.
Use Box-Cox transformations to get other decompositions.
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STL decomposition

us_retail_employment |>
model(STL(Employed)) |> 
components()

trend(window = ?) controls wiggliness of trend component.
season(window = ?) controls variation on seasonal component.
season(window = 'periodic') is equivalent to an infinite window.

Default setting

Season window = 13
Trend window = nextodd(

ceiling((1.5*period)/(1-(1.5/s.window)))
Robust robust=FALSE
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