

MONASH BUSINESS SCHOOL

## ETF3231/5231 Business forecasting

Week 5: Exponential smoothing

https://bf.numbat.space/



Monash University CRICOS Provider Number: 00008C





## 1 Exponential smoothing

- 2 Simple exponential smoothing
- 3 Models with trend

## Outline

## 1 Exponential smoothing

- 2 Simple exponential smoothing
- 3 Models with trend

## Historical perspective

Developed in the US navy for foreasting spowe parts Proposed in the late 1950s (Brown 1959, Holt 1957 and Winters 1960 are key pioneering works) as methods (algorithms) to produce point La for this reason not popular forecasts.

- Forecasts are weighted averages of past observations, with the weights decaying exponentially as the observations get older.
  - Framework generates reliable forecasts quickly and for a wide spectrum of time series. A great advantage and of major importance to applications in industry. · now used everywhere in business

    - · strong benchmarks

Combine components: level  $\ell_t$ , trend (slope)  $b_t$  and seasonal  $s_t$  to describe a time series

$$y_t = f(\ell_{t-1}, b_{t-1}, s_{t-m}) \rightarrow \hat{y}_{\tau_t h J \tau} = f(\ell_{\tau}, b_{\tau}, S_{\tau_t m + \tau})$$

- The rate of change of the components are controlled by "smoothing parameters":  $\alpha$ ,  $\beta$  and  $\gamma$  respectively.  $\rightarrow \gamma \alpha \gamma \beta$
- Need to choose best values for the smoothing parameters (and initial states).
- Add error ε<sub>t</sub> to get equivalent ETS state space models developed in the 1990s and 2000s. → Monash very famous about there Pioneer Rodph Suyder (tentbook with Pob Hyndmenn,

Anne ksehler & Keith Ord, 2008).

## Big idea: control the rate of change (smoothing)

 $\alpha$  controls the flexibility of the level  $\ell_t$ 

- If  $\alpha$  = 0, the level never updates (mean)
- If  $\alpha$  = 1, the level updates completely (naive)

 $\beta$  controls the flexibility of the trend  $b_t$ 

- If  $\beta$  = 0, the trend is linear (regression trend)
- If  $\beta$  = 1, the trend updates every observation

 $\gamma$  controls the flexibility of the seasonality  $s_t$ 

- If  $\gamma$  = 0, the seasonality is fixed (seasonal means)
- If  $\gamma$  = 1, the seasonality updates completely (seasonal naive)

usually  $0 \leq \alpha, \beta, \gamma \leq 1$ (move to follow)

(height overall position of the series)

(slope)

## A model for levels, trends, and seasonalities

We want a model that captures the level ( $\ell_t$ ), trend ( $b_t$ ) and seasonality ( $s_t$ ).

How do we combine these elements?

## A model for levels, trends, and seasonalities

We want a model that captures the level ( $\ell_t$ ), trend ( $b_t$ ) and seasonality ( $s_t$ ).

How do we combine these elements?

Additively?  $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$   $\varepsilon_t \sim iid N(\circ, \sigma^2)$ 

**Multiplicatively?** 

 $\mathbf{y}_t = \ell_{t-1} b_{t-1} s_{t-m} (\mathbf{1} + \varepsilon_t)$ 

Perhaps a mix of both?

 $\mathbf{y}_t = (\ell_{t-1} + b_{t-1})\mathbf{s}_{t-m} + \varepsilon_t$ 

## A model for levels, trends, and seasonalities

We want a model that captures the level ( $\ell_t$ ), trend ( $b_t$ ) and seasonality ( $s_t$ ).

#### How do we combine these elements?

Additively?

$$\mathbf{y}_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

#### **Multiplicatively?**

$$\mathbf{y}_t = \ell_{t-1} b_{t-1} s_{t-m} (1 + \varepsilon_t)$$

#### Perhaps a mix of both?

$$\mathsf{y}_t = (\ell_{t-1} + b_{t-1}) s_{t-m} + \varepsilon_t$$

How do the level, trend and seasonal components evolve over time?

\* Hence more than one equation gets used.

## **ETS models**

#### model(ETS(y ~ error() + trend() + season()))

#### Error: Additive ("A") or multiplicative ("M")

## **ETS models**

General notation → E T S : ExponenTial Smoothing Error Trend Season

#### model(ETS(y ~ error() + trend() + season()))

#### Error: Additive ("A") or multiplicative ("M")

**Trend:** None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

## **ETS models**

General notation E T S : ExponenTial Smoothing Error Trend Season

#### model(ETS(y ~ error() + trend() + season()))

#### Error: Additive ("A") or multiplicative ("M")

**Trend:** None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

- Hence Many combinations of these (in theory 30 models, in practice about)

## Models and methods

#### Methods

### Algorithms that return point forecasts.

## **Models and methods**

#### Methods

Algorithms that return point forecasts.

#### Models

 Generate same point forecasts but can also generate forecast distributions.

A stochastic (or random) data generating process that can generate an entire forecast distribution.

Allow for "proper" model selection.

· Ord , Koehler, Snyder (1997, TASA)

\* Machino learning methods (NNS) are in their apporitmnic phase.

**SA 1** 



## 1 Exponential smoothing

- 2 Simple exponential smoothing
- 3 Models with trend

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

$$\hat{y}_{2|1} = \alpha y_1 + ((-\alpha) \hat{y}_1)_0$$

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

$$\hat{y}_{2|1} = \alpha y_1 + (1 - \alpha) \hat{y}_{1|0} lo$$

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

$$\hat{y}_{2|1} = \alpha y_1 + (1 - \alpha) \hat{y}_{1|0} l_0$$
  
 $\hat{y}_{3|2} = \alpha y_2 + (1 - \alpha) \hat{y}_{2|1}$ 

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

$$\hat{y}_{2|1} = \alpha y_{1} + (1 - \alpha) \hat{y}_{1|0} l_{0}$$

$$\hat{y}_{3|2} = \alpha y_{2} + (1 - \alpha) \hat{y}_{2|1}$$

$$\hat{y}_{4|3} = \alpha y_{3} + (1 - \alpha) \hat{y}_{3|2}$$

#### **Iterative form**

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

$$\hat{y}_{2|1} = \alpha y_{1} + (1 - \alpha) \hat{y}_{1|0} l_{0}$$

$$\hat{y}_{3|2} = \alpha y_{2} + (1 - \alpha) \hat{y}_{2|1}$$

$$\hat{y}_{4|3} = \alpha y_{3} + (1 - \alpha) \hat{y}_{3|2}$$

$$\hat{y}_{4|3} = \alpha y_{7} + (1 - \alpha) \hat{y}_{3|1}$$

11

#### **Iterative form**

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

#### Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (\mathbf{1} - \alpha)^j \mathbf{y}_{T-j} + (\mathbf{1} - \alpha)^T \ell_0$$

Start from 
$$\hat{y}_{T+1|T} = \alpha y_T + (1-\alpha) \hat{y}_{T|T-1}$$
  

$$= \alpha y_T + (1-\alpha) [\alpha y_{T-1} + (1-\alpha) \hat{y}_{T-1}]_{T-2}$$

$$= \alpha y_T + \alpha (1-\alpha) y_{T-1} + (1-\alpha)^2 [\hat{y}_{T-1}]_{T-2}$$

$$= \alpha y_T + \alpha (1-\alpha) y_{T-1} + (1-\alpha)^2 [\alpha y_{T-2} + (1-\alpha) \hat{y}_{T-2}]_{T-2}$$

$$= \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + (1-\alpha)^3 \hat{y}_{T-2}]_{T-2}$$

$$= \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + (1-\alpha)^3 \hat{y}_{T-2}]_{T-2}$$

$$= \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots + (1-\alpha)^T \int_0^T \frac{u}{u} \frac{du}{u} \frac{du}{u} \frac{du}{u} \frac{du}{u}$$
when  $\alpha = 1$   $\hat{y}_{T+1|T} = \hat{y}_T$   $\rightarrow$  only last obs matters  
 $\alpha = 0$   $\hat{y}_{T+1|T} = \{0$   $\rightarrow$  we learn nothing from rew info

#### **Iterative form**

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

#### Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (\mathbf{1} - \alpha)^j \mathbf{y}_{T-j} + (\mathbf{1} - \alpha)^T \ell_0$$

#### **Component form**

Forecast equation Smoothing equation

$$\gamma_{t+1|t} = \ell_t$$

$$\ell_t = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha) \ell_{t-1}$$

#### **Iterative form**

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha) \hat{\mathbf{y}}_{t|t-1}$$

let 
$$\hat{y}_{t+1|t} = lt$$
  
=>  $\hat{y}_{t+1|t-1} = lt-1$ 

#### Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (\mathbf{1} - \alpha)^j \mathbf{y}_{T-j} + (\mathbf{1} - \alpha)^T \ell_0$$

#### **Component form**

Forecast equation Smoothing equation

$$\dot{v}_{t+1|t} = \ell_t$$

$$\ell_t = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha)\ell_{t-1}$$

# Component formForecast equation $\hat{y}_{t+1|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$



# Component formForecast equation $\hat{y}_{t+1|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Residual: 
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

#### **Error correction form**

$$y_t = \ell_{t-1} + e_t$$
$$\ell_t = \ell_{t-1} + \alpha (y_t - \ell_{t-1})$$
$$= \ell_{t-1} + \alpha e_t$$

# Component formForecast equation $\hat{y}_{t+1|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Residual: 
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

#### **Error correction form**

$$y_t = \ell_{t-1} + e_t$$
$$\ell_t = \ell_{t-1} + \alpha (y_t - \ell_{t-1})$$
$$= \ell_{t-1} + \alpha e_t$$

Specify probability distribution for  $e_t$ , we assume  $e_t$  =  $\varepsilon_t \sim$  NID(0,  $\sigma^2$ ). <sup>12</sup>

| Measurement equation | $\mathbf{y}_t = \ell_{t-1} + \varepsilon_t$  |
|----------------------|----------------------------------------------|
| State equation       | $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$ |

where  $\varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

innovations or single source of error because equations have the

same error process,  $\varepsilon_t$ .

 Measurement equation: relationship between observations and states.

State equation(s): evolution of the state(s) through time.

| Measurement equation | $\mathbf{y}_t = \ell_{t-1} + \varepsilon_t$  |
|----------------------|----------------------------------------------|
| State equation       | $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$ |

where  $\varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

innovations or single source of error because equations have the

same error process,  $\varepsilon_t$ .

 Measurement equation: relationship between observations and states.

State equation(s): evolution of the state(s) through time.
QUESTION (HOMEWORK: what happen when x=1?

## ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors  $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$ Substituting  $\hat{y}_{t|t-1} = \ell_{t-1}$  gives:

• 
$$y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$$

• 
$$e_t = y_t - \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$$

## ETS(M,N,N): SES with multiplicative errors.

Specify relative errors  $\varepsilon_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$ Substituting  $\hat{y}_{t|t-1} = \ell_{t-1}$  gives:  $y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$   $e_t = y_t - \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$ Measurement equation  $y_t = \ell_{t-1}(1 + \varepsilon_t)$ State equation  $\ell_t = \ell_{t-1}(1 + \alpha\varepsilon_t)$ 

## ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors  $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$ Substituting  $\hat{y}_{t|t-1} = \ell_{t-1}$  gives:
- - $\mathbf{v}_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$
  - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$

Measurement equation  $\mathbf{y}_t = \ell_{t-1} (\mathbf{1} + \varepsilon_t)$  $\ell_t = \ell_{t-1} (1 + \alpha \varepsilon_t)$ State equation

they are different mosels Models with additive and multiplicative errors with the same (b, a) parameters generate the same point forecasts but different prediction intervals.

## Residuals

#### **Residuals (response)**

 $e_t = y_t - \hat{y}_{t|t-1}$  \* for all methods \$ models \* . resid =  $e_t$ 

## Residuals

#### **Residuals (response)**

#### \* for all methods & models

$$e_t = y_t - \hat{y}_{t|t-1}$$
 \* . resid =  $e_t$ 

#### Innovation residuals

## Additive error model:

$$\hat{\varepsilon}_t = \mathbf{y}_t - \hat{\mathbf{y}}_{t|t-1} = \mathbf{e}_t$$

Multiplicative error model:

$$\hat{\varepsilon}_t = \frac{\mathbf{y}_t - \hat{\mathbf{y}}_{t|t-1}}{\hat{\mathbf{y}}_{t|t-1}} \neq \mathbf{e}_t$$

- \* These are attached to the model and the fit
- + We make assumptions about these



## **1** Exponential smoothing

2 Simple exponential smoothing

## 3 Models with trend

Smoothing  
equation level: 
$$l_t = \alpha y_t + (1 - \alpha) \hat{y}_{t+t}$$

$$= \alpha g_{t} + (1 - \alpha) \ell_{t-1}$$

×.

Holti trend method  
SES Component form  
Foreverst equation:  
Smoothing  
equation  
trend:  

$$b_t = p^* (l_t - a) (l_{t-1} + b_{t-1})$$
  
 $b_t = p^* (l_t - b_{t-1}) + (1 - p^*) b_{t-1}$   
 $current slope$   
 $(change in estimated larel)$ 

S

## Holt's linear trend method

| Component form |                                                                     |
|----------------|---------------------------------------------------------------------|
| Forecast       | $\hat{y}_{t+h t} = \ell_t + hb_t$                                   |
| Level          | $\ell_t = \alpha \mathbf{y}_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ |
| Trend          | $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1},$      |

## Holt's linear trend method

| Component form |                                                                     |
|----------------|---------------------------------------------------------------------|
| Forecast       | $\hat{\mathbf{y}}_{t+h t} = \ell_t + hb_t$                          |
| Level          | $\ell_t = \alpha \mathbf{y}_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ |
| Trend          | $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1},$      |

- Two smoothing parameters  $\alpha$  and  $\beta^*$  ( $0 \le \alpha, \beta^* \le 1$ ).
- ℓ<sub>t</sub> level: weighted average between y<sub>t</sub> and one-step ahead forecast for time t, (ℓ<sub>t-1</sub> + b<sub>t-1</sub> = ŷ<sub>t|t-1</sub>)
- b<sub>t</sub> slope: weighted average of (l<sub>t</sub> l<sub>t-1</sub>) and b<sub>t-1</sub>, current and previous estimate of slope.
   Choose α, β\*, l<sub>0</sub>, b<sub>0</sub> to minimise SSE.

$$\mathcal{E}_{\text{VVOV}} \quad \mathcal{E}_{\text{VVOV}} \quad \mathcal{E}_{\text{VVVV}} \quad \mathcal{E}_{\text{VVV}} \quad \mathcal{E}_{\text{VV}} \quad \mathcal{E}_{\text{VV}} \quad \mathcal{E}_{\text{V$$

$$\mathcal{E}_{\text{vvor}} \quad \mathcal{E}_{\text{vvor}} \quad \mathcal{E}_{\text{vor}} \quad$$

$$l_{t} = \alpha y_{t} + (1-\alpha) (l_{t-1} + b_{t-1}) = \alpha y_{t} + l_{t-1} + b_{t-1} - \alpha l_{t-1} - \alpha b_{t-1}$$
$$= l_{t-1} + b_{t-1} + \alpha (y_{t} - (l_{t-1} + b_{t-1}))$$

=) 
$$l_t = l_{t-1} + b_{t-1} + \alpha e_t$$
  $\varepsilon_t \sim NID(0, \delta^2)$  (Level eqn)

$$b_{t} = p^{*} (l_{t} - l_{t-1}) + (1 - p^{*}) b_{t-1}$$

$$= p^{*} l_{t} - p^{*} l_{t-1} + b_{t-1} - p^{*} b_{t-1}$$

$$= p^{*} (l_{t-1} + b_{t-1} + \alpha l_{t}) - p^{*} l_{t-1} + b_{t-1} - p^{*} b_{t-1}$$

$$= p^{*} (l_{t-1} + p^{*} b_{t-1} + \alpha p^{*} e_{t} - p^{*} l_{t-1} + b_{t-1} - p^{*} b_{t-1}$$

$$= b_{t-1} + \alpha p^{*} e_{t} - p^{*} l_{t-1} + b_{t-1} - p^{*} b_{t-1}$$

## ETS(A,A,N)

Holt's linear method with additive errors.

- Assume  $\varepsilon_t = y_t \ell_{t-1} b_{t-1} \sim \text{NID}(0, \sigma^2)$ .
- Substituting into the error correction equations for Holt's linear method

$$y_{t} = \ell_{t-1} + b_{t-1} + \varepsilon_{t}$$
  

$$\ell_{t} = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_{t}$$
  

$$b_{t} = b_{t-1} + \alpha \beta^{*} \varepsilon_{t}$$
  
Pereloped in early  
2000 A Momasile

For simplicity, set  $\beta = \alpha \beta^*$ .

as 
$$0 < F^{\dagger} < 1 = 3 \quad 0 < F < \alpha$$



Holt's methods method with additive errors.

Forecast equation $\hat{y}_{t+h|t} = \ell_t + hb_t$ Observation equation $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$ State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$  $b_t = b_{t-1} + \beta \varepsilon_t$ 

Forecast errors:  $e_t = y_t - \hat{y}_{t|t-1}$ 



## ETS(M,A,N)

Holt's linear method with multiplicative errors.

Assume  $\varepsilon_t = \frac{y_t - (\ell_{t-1} + b_{t-1})}{(\ell_{t-1} + b_{t-1})} \Rightarrow \hat{\varepsilon}_{t-1} - \frac{y_t - \hat{y}_{t-1}}{\hat{y}_{t-1}} \neq e_t$ Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as  $y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$  so now we multiply by the error component  $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$  $b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_{t}$ where again  $\beta = \alpha \beta^*$  and  $\varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

## Damped trend method

#### **Component form**

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h) b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Assnme \$= 0.9

$$h=2$$
  $(\phi + \phi^2) b_{\tau}$   $(11 + 0.81) b_{\tau}$ 

h=3 
$$(\phi + \phi^2 + \phi^3) b_T$$
 (" + " + 0.729) b<sub>7</sub>

as  $h \rightarrow \infty \quad \phi^{n} \rightarrow 0 \qquad \phi + \phi^{2} + \phi^{2} + \dots = \frac{\phi}{1 - \phi} \quad \longrightarrow \quad l_{T} + \frac{\phi}{1 - \phi} \quad b_{T} \quad (flast / Constraint)$ 

## **Damped trend method**

#### **Component form**

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$
  

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$
  

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$$

- **Damping parameter 0**  $< \phi < 1$ .
- If  $\phi$  = 1, identical to Holt's linear trend.
- As  $h \to \infty$ ,  $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$ .
- Short-run forecasts trended, long-run forecasts constant.



## Write down the model for ETS(A,Ad,N)

Recall you need error correction form. Start with  $e_{t} = \hat{y}_{t} - \hat{y}_{t/t-1} = y_{t} - (l_{t-1} + \phi b_{t-1})$ Free orrompe  $y_{t} = l_{t-1} + \phi b_{t-1} + e_{t}$