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2 Backshift notation
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ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data
structures like trend and seasonality. But it can capture a huge range
of time series patterns.
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Make data stationary (variance & mean), fit model, reverse, forecast.
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Stationarity

Definition
If {yt} is a stationary time series, then for all s, the distribution of
(yt, . . . , yt+s) does not depend on t.

A stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term

Transformations help to stabilize the variance.
For ARIMA modelling, we also need to stabilize the mean.
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Stationary?

gafa_stock |>
filter(Symbol == "GOOG", year(Date) == 2018) |>
autoplot(Close) +
labs(y = "Google closing stock price", x = "Day")
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Stationary?

gafa_stock |>
filter(Symbol == "GOOG", year(Date) == 2018) |>
autoplot(difference(Close)) +
labs(y = "Google closing stock price", x = "Day")
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Stationary?

aus_production |>
autoplot(Cement) +
labs(title = "Cement production in Australia")
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Stationary?

global_economy |>
filter(Country == "Algeria") |>
autoplot(Exports) +
labs(y = "% of GDP", title = "Algerian Exports")
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Stationary?

aus_livestock |>
filter(Animal == "Pigs", State == "Victoria", year(Month) >= 2015) |>
autoplot(Count/1e3) +
labs(y = "thousands", title = "Total pigs slaughtered in Victoria")
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Stationary?

aus_livestock |>
filter(Animal == "Pigs", State == "Victoria", year(Month) >= 2010) |>
autoplot(Count/1e3) +
labs(y = "thousands", title = "Total pigs slaughtered in Victoria")
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Stationary?

aus_livestock |>
filter(Animal == "Pigs", State == "Victoria") |>
autoplot(Count/1e3) +
labs(y = "thousands", title = "Total pigs slaughtered in Victoria")
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Stationary?

pelt |>
autoplot(Lynx) +
labs(y = "Number trapped",

title = "Annual Canadian Lynx Trappings")
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Example: Google stock price

google_2018 <- gafa_stock |>
filter(Symbol == "GOOG", year(Date) == 2018) |>
mutate(trading_day = row_number()) |>
update_tsibble(index = trading_day, regular = TRUE)
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Example: Google stock price

google_2018 |>
autoplot(Close) + labs(y = "Google closing stock price", x = "Day")
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Example: Google stock price

google_2018 |>
ACF(Close) |> autoplot()
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Example: Google stock price

google_2018 |>
autoplot(difference(Close)) +
labs(y ="Change in Google closing stock price ($USD)", x="Day")
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Example: Google stock price

google_2018 |> ACF(difference(Close)) |> autoplot()
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Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between each observation
in the original series: y′

t = yt − yt−1.
The differenced series will have only T − 1 values since it is not
possible to calculate a difference y′

1 for the first observation.
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Example: Google stock price

The differences are the day-to-day changes.
Now the series looks just like a white noise series:

▶ No autocorrelations outside the 95% limits.
▶ Large Ljung-Box p-value.

Conclusion: The daily change in the Google stock price is
essentially a random amount uncorrelated with previous days.

20

George



Random walk model

Graph of differenced data suggests the following model:

yt − yt−1 = εt or yt = yt−1 + εt

where εt ∼ NID(0, σ2).

Very widely used for non-stationary data.
This is the model behind the naïve method.
Random walks typically have:

▶ long periods of apparent trends up or down.
▶ Sudden/unpredictable changes in direction - stochastic trend.

Forecast are equal to the last observation (Naive)
▶ future movements are unpredictable - movements up or down are

equally likely. 21
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Random walk with drift model

If the differenced series has a non-zero mean then:

yt − yt−1 = c + εt or yt = c + yt−1 + εt

where εt ∼ NID(0, σ2).

c is the non-zero average change between consecutive
observations.
If c > 0, yt will tend to drift upwards and vice versa.

▶ Stochastic and deterministic trend.

This is the model behind the drift method.
22
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Further differencing

Occasionally you need to difference non-seasonal data twice.

We seasonally difference seasonal data.
y′
t = yt − yt−m

wherem = number of seasons.
▶ For monthly datam = 12, for quarterly datam = 4.
▶ Seasonally differenced series will have T − m obs.
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Seasonal random walk

If seasonally differenced data is white noise it implies:

yt − yt−m = εt or yt = yt−m + εt

The model behind the seasonal naïve method.
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Seasonal differencing

Common to take both seasonal and first differences. When both are
applied. . .

it makes no difference which is done first—the result will be the
same.
If seasonality is strong, we recommend that seasonal
differencing be done first because sometimes the resulting
series will be stationary and there will be no need for further
first difference.
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Unit root tests

Statistical tests to determine the required order of differencing.

1 Augmented Dickey Fuller test: null hypothesis is that the data
are non-stationary and non-seasonal.

2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is
that the data are stationary and non-seasonal.

3 Other tests available for seasonal data.

26



Unit root tests

Statistical tests to determine the required order of differencing.

1 Augmented Dickey Fuller test: null hypothesis is that the data
are non-stationary and non-seasonal.

2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is
that the data are stationary and non-seasonal.

3 Other tests available for seasonal data.

26

H0: non-stationary

H0: stationary

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

George

iPad Pro 11" 3

George

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3

iPad Pro 11" 3



Seasonal differencing

STL decomposition: yt = Tt + St + Rt

Seasonal strength Fs = max
(
0, 1 − Var(Rt)

Var(St+Rt)

)
If Fs > 0.64, do one seasonal difference.
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Backshift notation

First-order difference is denoted as (1 − B)yt;
Second-order difference is denoted as (1 − B)2yt;
Second-order difference is not the same as a second difference,
which would be denoted (1 − B2)yt;
In general, a dth-order difference can be written as (1 − B)dyt

A seasonal difference is denoted as (1 − Bm)yt;
A seasonal difference followed by a first difference can be
written as

(1 − Bm)(1 − B)yt
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