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ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data
structures like trend and seasonality. But it can capture a huge range
of time series patterns.
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Make data stationary (variance & mean), fit model, reverse, forecast.
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AR(1) model including a constant

yt = c + ϕ1yt−1 + εt, |ϕ1| < 0

When ϕ1 = 0 and c = 0, yt is equivalent to WN;
When ϕ1 = 1 and c = 0, yt is equivalent to a RW;
When ϕ1 = 1 and c ̸= 0, yt is equivalent to a RW with drift;
When ϕ1 > 0, yt tends to hang below or above the mean of yt.
When ϕ1 < 0, yt tends to oscillate below and above the mean of
yt.
If E(yt) = µ, µ = c

1−ϕ1
, c is related to the mean of yt.

5

George

yiorg
Cross-Out



George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George

George



Autoregressive models

A multiple regression with lagged values of yt as predictors.

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt

= c + (ϕ1B + ϕ2B2 + · · · + ϕpBp)yt + εt

(1 − ϕ1B − ϕ2B2 − · · · − ϕpBp)yt = c + εt

ϕ(B)yt = c + εt

εt is white noise.
ϕ(B) = (1 − ϕ1B − ϕ2B2 − · · · − ϕpBp)
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Stationarity conditions

We normally restrict autoregressive models to stationary data, and
then some constraints on the values of the parameters are required.
General condition for stationarity
Complex roots of ϕ(z) = 1 − ϕ1z − ϕ2z2 − · · · − ϕpzp lie outside the
unit circle on the complex plane.

For p = 1: −1 < ϕ1 < 1.
For p = 2:
−1 < ϕ2 < 1 ϕ2 + ϕ1 < 1 ϕ2 − ϕ1 < 1.
More complicated conditions hold for p ≥ 3.
fable takes care of this.
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Moving Average (MA) models

A multiple regression with past errors as predictors.

yt = c + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

= c + (1 + θ1B + θ2B2 + · · · + θqBq)εt
= c + θ(B)εt

εt is white noise.
θ(B) = (1 + θ1B + θ2B2 + · · · + θqBq)
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Invertibility

General condition for invertibility
Complex roots of θ(z) = 1 + θ1z + θ2z2 + · · · + θqzq lie outside the unit
circle on the complex plane.

For q = 1: −1 < θ1 < 1.
For q = 2:
−1 < θ2 < 1 θ2 + θ1 > −1 θ1 − θ2 < 1.
More complicated conditions hold for q ≥ 3.
fable takes care of this.
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ARIMA models

ARIMA(p, d, q) model: ϕ(B)(1 − B)dyt = c + θ(B)εt
AR: p = order of the autoregressive part
I: d = degree of first differencing involved

MA: q = order of the moving average part.

Conditions on AR coefficients ensure stationarity.
Conditions on MA coefficients ensure invertibility.
White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q)
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R model

Intercept form
(1 − ϕ1B − · · · − ϕpBp)y′

t = c + (1 + θ1B + · · · + θqBq)εt

Mean form
(1 − ϕ1B − · · · − ϕpBp)(y′

t − µ) = (1 + θ1B + · · · + θqBq)εt

y′
t = (1 − B)dyt

µ is the mean of y′
t.

c = µ(1 − ϕ1 − · · · − ϕp).
ARIMA() in the fable package uses intercept form.
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Understanding ARIMA models

If c = 0 and d = 0, the long-term forecasts will go to zero.
If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
If c = 0 and d = 2, the long-term forecasts will follow a straight line.
If c ̸= 0 and d = 0, the long-term forecasts will go to the mean of the data.
If c ̸= 0 and d = 1, the long-term forecasts will follow a straight line.
If c ̸= 0 and d = 2, the long-term forecasts will follow a quadratic trend.
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Understanding ARIMA models

Forecast variance and d
The higher the value of d, the more rapidly the prediction intervals increase in
size.
For d = 0, the long-term forecast standard deviation will go to the standard
deviation of the historical data.

Cyclic behaviour
For cyclic forecasts, p ≥ 2 and some restrictions on coefficients are required.
If p = 2, we need ϕ2

1 + 4ϕ2 < 0. Then average cycle of length
(2π)/

[
arc cos(−ϕ1(1 − ϕ2)/(4ϕ2))

]
.
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Partial autocorrelations

Partial autocorrelations measure relationship
between yt and yt−k, when the effects of other time lags — 1, 2, 3, . . . , k − 1
— are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of ϕk in regression:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕkyt−k.

Varying number of terms on RHS gives αk for different values of k.
α1 = ρ1
same critical values of ±1.96/

√
T as for ACF.

Last significant αk indicates the order of an AR model.
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ACF and PACF interpretation

AR(1)

ρk = ϕk
1 for k = 1, 2, . . . ;

α1 = ϕ1 αk = 0 for k = 2, 3, . . . .

So we have an AR(1) model when

autocorrelations exponentially decay
there is a single significant partial autocorrelation.
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ACF and PACF interpretation

AR(p)

ACF dies out in an exponential or damped sine-wave manner
PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

the ACF is exponentially decaying or sinusoidal
there is a significant spike at lag p in PACF, but none beyond p
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ACF and PACF interpretation

MA(1)

ρ1 = θ1 ρk = 0 for k = 2, 3, . . . ;
αk = −(−θ1)k

So we have an MA(1) model when

the PACF is exponentially decaying and
there is a single significant spike in ACF
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ACF and PACF interpretation

MA(q)

PACF dies out in an exponential or damped sine-wave manner
ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

the PACF is exponentially decaying or sinusoidal
there is a significant spike at lag q in ACF, but none beyond q
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